Exercise 3.2.1

For the following functions, sketch the Fourier series of $f(x)$ (on the interval $-L \leq x \leq L$). Compare $f(x)$ to its Fourier series:
(a) $f(x)=1$
(b) $f(x)=x^{2}$
(c) $f(x)=1+x$
(d) $f(x)=e^{x}$
(e) $f(x)= \begin{cases}x & x<0 \\ 2 x & x>0\end{cases}$
(f) $f(x)= \begin{cases}0 & x<0 \\ 1+x & x>0\end{cases}$
(g) $f(x)= \begin{cases}x & x<L / 2 \\ 0 & x>L / 2\end{cases}$

Solution

The Fourier series expansion of $f(x)$, which is defined on $-L \leq x \leq L$ and assumed to be piecewise smooth, is a $2 L$-periodic extension of this function over all of x. Where f is continuous, the expansion is given by

$$
f(x)=A_{0}+\sum_{n=1}^{\infty}\left(A_{n} \cos \frac{n \pi x}{L}+B_{n} \sin \frac{n \pi x}{L}\right),
$$

and where there are jump discontinuities, the expansion takes the average value of f : $[f(x-)+f(x+)] / 2$. The formulas for the coefficients are

$$
\begin{aligned}
A_{0} & =\frac{1}{2 L} \int_{-L}^{L} f(x) d x \\
A_{n} & =\frac{1}{L} \int_{-L}^{L} f(x) \cos \frac{n \pi x}{L} d x \\
B_{n} & =\frac{1}{L} \int_{-L}^{L} f(x) \sin \frac{n \pi x}{L} d x,
\end{aligned}
$$

which are obtained by integrating both sides of the Fourier series expansion and taking advantage of the fact that the sine and cosine functions are orthogonal. In the following parts, $f(x)$ will be in red and the expansion will be in blue.

Part (a)

For $f(x)=1$, the coefficients are

$$
\begin{aligned}
A_{0} & =\frac{1}{2 L} \int_{-L}^{L} d x=1 \\
A_{n} & =\frac{1}{L} \int_{-L}^{L} \cos \frac{n \pi x}{L} d x=0 \\
B_{n} & =\frac{1}{L} \int_{-L}^{L} \sin \frac{n \pi x}{L} d x=0
\end{aligned}
$$

Part (b)
For $f(x)=x^{2}$, the coefficients are

$$
\begin{aligned}
A_{0} & =\frac{1}{2 L} \int_{-L}^{L} x^{2} d x=\frac{L^{2}}{3} \\
A_{n} & =\frac{1}{L} \int_{-L}^{L} x^{2} \cos \frac{n \pi x}{L} d x=\frac{4(-1)^{n} L^{2}}{n^{2} \pi^{2}} \\
B_{n} & =\frac{1}{L} \int_{-L}^{L} x^{2} \sin \frac{n \pi x}{L} d x=0 .
\end{aligned}
$$

Part (c)

For $f(x)=1+x$, the coefficients are

$$
\begin{aligned}
A_{0} & =\frac{1}{2 L} \int_{-L}^{L}(1+x) d x=1 \\
A_{n} & =\frac{1}{L} \int_{-L}^{L}(1+x) \cos \frac{n \pi x}{L} d x=0 \\
B_{n} & =\frac{1}{L} \int_{-L}^{L}(1+x) \sin \frac{n \pi x}{L} d x=-\frac{2(-1)^{n} L}{n \pi} .
\end{aligned}
$$

Part (d)

For $f(x)=e^{x}$, the coefficients are

$$
\begin{aligned}
A_{0} & =\frac{1}{2 L} \int_{-L}^{L} e^{x} d x=\frac{\sinh L}{L} \\
A_{n} & =\frac{1}{L} \int_{-L}^{L} e^{x} \cos \frac{n \pi x}{L} d x=\frac{2(-1)^{n} L \sinh L}{n^{2} \pi^{2}+L^{2}} \\
B_{n} & =\frac{1}{L} \int_{-L}^{L} e^{x} \sin \frac{n \pi x}{L} d x=-\frac{2(-1)^{n} n \pi \sinh L}{n^{2} \pi^{2}+L^{2}} .
\end{aligned}
$$

Part (e)
For $f(x)=x$ if $x<0$ and $f(x)=2 x$ if $x>0$, the coefficients are

$$
\begin{aligned}
& A_{0}=\frac{1}{2 L}\left(\int_{-L}^{0} x d x+\int_{0}^{L} 2 x d x\right)=\frac{L}{4} \\
& A_{n}=\frac{1}{L}\left(\int_{-L}^{0} x \cos \frac{n \pi x}{L} d x+\int_{0}^{L} 2 x \cos \frac{n \pi x}{L} d x\right)=\frac{\left[-1+(-1)^{n}\right] L}{n^{2} \pi^{2}} \\
& B_{n}=\frac{1}{L}\left(\int_{-L}^{0} x \sin \frac{n \pi x}{L} d x+\int_{0}^{L} 2 x \sin \frac{n \pi x}{L} d x\right)=-\frac{3(-1)^{n} L}{n \pi} .
\end{aligned}
$$

Part (f)

For $f(x)=0$ if $x<0$ and $f(x)=1+x$ if $x>0$, the coefficients are

$$
\begin{aligned}
& A_{0}=\frac{1}{2 L}\left[\int_{-L}^{0} 0 d x+\int_{0}^{L}(1+x) d x\right]=\frac{L+2}{4} \\
& A_{n}=\frac{1}{L}\left[\int_{-L}^{0} 0 \cos \frac{n \pi x}{L} d x+\int_{0}^{L}(1+x) \cos \frac{n \pi x}{L} d x\right]=\frac{\left[-1+(-1)^{n}\right] L}{n^{2} \pi^{2}} \\
& B_{n}=\frac{1}{L}\left[\int_{-L}^{0} 0 \sin \frac{n \pi x}{L} d x+\int_{0}^{L}(1+x) \sin \frac{n \pi x}{L} d x\right]=\frac{1-(-1)^{n}(L+1)}{n \pi} .
\end{aligned}
$$

Part (g)

For $f(x)=x$ if $x<L / 2$ and $f(x)=0$ if $x>L / 2$, the coefficients are

$$
\begin{aligned}
& A_{0}=\frac{1}{2 L}\left[\int_{-L}^{L / 2} x d x+\int_{L / 2}^{L} 0 d x\right]=-\frac{3 L}{16} \\
& A_{n}=\frac{1}{L}\left[\int_{-L}^{L / 2} x \cos \frac{n \pi x}{L} d x+\int_{L / 2}^{L} 0 \cos \frac{n \pi x}{L} d x\right]=\frac{L}{2 n^{2} \pi^{2}}\left[-2(-1)^{n}+2 \cos \frac{n \pi}{2}+n \pi \sin \frac{n \pi}{2}\right] \\
& B_{n}=\frac{1}{L}\left[\int_{-L}^{L / 2} x \sin \frac{n \pi x}{L} d x+\int_{L / 2}^{L} 0 \sin \frac{n \pi x}{L} d x\right]=\frac{L}{2 n^{2} \pi^{2}}\left[-2(-1)^{n} n \pi-n \pi \cos \frac{n \pi}{2}+2 \sin \frac{n \pi}{2}\right] .
\end{aligned}
$$

